

Prof. Selmiye Alkan Gürsel & Prof. Alp Yürüm Sabancı University Faculty of Engineering & Natural Sciences Istanbul/Türkiye

selmiye@sabanciuniv.edu

alp.yurum@sabanciuniv.edu

HORIZON-CL5-2025-04-D2-04:

Integrating advanced material, cell design and manufacturing development for high-performance batteries aimed at mobility

Continuous Process for Solid State Battery Production

BE

Batteries European Partnership Association

. Sabancı

Universites

Graphite/Si - anode active material

Continuous Process for Solid State Battery Production

Pressed and stacked sheet ready to be introduced to the battery manufacturing process

. Sabancı . Universitesi

BEPA Matchmaking Event

Continuous Process for Solid State Battery Production

WP1: Anode/Anolyte Preparation and Characterization

- *Development of Si-C composite.
- *Optimization of anolyte formulations for compatibility with solid-state electrolytes.
- *Structural, electrochemical, and mechanical characterization.

WP2: Cathode/Catholyte Preparation and Characterization

- *Synthesis and optimization of cathode materials (NMC).
- *Development of compatible catholyte materials to enhance ion transport.
- *Material characterization and performance validation.

WP3: Electrolyte Preparation and Characterization

- *Development of solid and hybrid electrolytes with tailored conductivity and mechanical stability.
- *Compatibility studies with electrodes and scalable processing methods.
- *Thermal, electrochemical, and structural analysis.

WP4: Hybrid Composite Manufacturing (Continuous Process Development)

*Optimization of the continuous process to produce cathode/catholyte-electrolyteanode/anolyte layers in a single step.

*Process adaptation for existing battery production lines.

*Characterization of the composite sheets for mechanical integrity, uniformity, and electrochemical performance.

WP5: Cell Assembly and Testing

*Fabrication of prototype cells using the new hybrid composite sheets.

*Electrochemical performance testing, including cycle life, rate capability, and stability.

*Safety and scalability validation at TRL 5 level.

WP6: Process Modeling and Digitalization

*Development of process models for continuous process-based composite sheet fabrication.

*Implementation of digital twin technology for process optimization.

*AI-driven data analysis to enhance manufacturing efficiency.

WP7: Life Cycle Analysis (LCA) and Sustainability Assessment

*Evaluation of energy consumption, waste reduction, and resource efficiency of the new process.

*Comparative analysis of environmental impact vs. conventional SSB manufacturing.

*Recycling strategies for end-of-life materials.

WP8: Manufacturing Adaptation and Integration

*Engineering modifications required for integrating the new process into existing battery production lines.

*Pilot-scale demonstration of process feasibility.

WP9: Dissemination, Exploitation, and Business Strategy

*Developing a business case for commercialization.

*Engaging industry stakeholders and potential adopters.

*Intellectual property and market analysis for technology deployment.

